
Quantum Mechanics I
Week Easter (Solutions)

Spring Semester 2025

1 Particle in an uniform electric field
An electron is known to be initially in a state with zero average momentum p̄(0) = ⟨p⟩ = 0,
and is known to be described at t = 0 by a real-valued wavefunction. The electron can be
assumed to move in one dimension (along the x axis). An uniform and time-independent
electric field E parallel to the x axis is turned on to accelerate the electron.

(a) Write the Hamiltonian of the system and the corresponding time-dependent
Schrödinger equation.

The Hamiltonian can be written as the sum of the kinetic energy p̂2/(2me) and of
the electrostatic potential of the electron in the external field: V̂ = eEx̂, where x̂ is
the position operator. Thus

Ĥ =
p̂2

2me

+ eEx̂ . (1.1)

The time-dependent Schrödinger equation then reads:

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ + eExψ (1.2)

and, taking into account that the particle is assumed to move only in one dimension,

iℏ
∂ψ(x, t)

∂t
= −ℏ2∂2ψ(x, t)

∂x2
+ eExψ(x, t) . (1.3)

(b) Write and solve the corresponding Heisenberg equations of motion and compute the
average position and momentum at time t.

The Heisenberg equations of motion read:

dx̂

dt
=
i

ℏ
[Ĥ, x̂] =

i

2mℏ
(p̂[p̂, x̂] + [p̂, x̂]p̂) =

p̂

m
, (1.4)

dp̂

dt
=
i

ℏ
[Ĥ, p̂] =

i

ℏ
eE[x̂, p̂] = −eE . (1.5)

The solutions of the Heisenberg equations can be derived by integrating the
equations of motion and give:

p̂(t) = −eEt1̂ + p̂(0) ,

x̂(t) = x̂(0)− eEt2

2m
1̂ +

p̂(0)t

m

(1.6)
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Here, 1̂ is used to denote the identity operator (an operator which acts trivially on
every state vector in the Hilbert space, i.e. 1̂|ψ⟩ = |ψ⟩. The 1̂ operator commutes
with all operators: [1̂, Â] = 0 for any Â.

The average position and momentum at time t can be expressed as

x̄(t) = ⟨ψ0|x̂(t)|ψ0⟩ = x̄(0)− eEt2

2m
+
p̄(0)t

m
p̄(t) = ⟨ψ0|p̂(t)|ψ0⟩ = p̄(0)− eEt ,

(1.7)

where |ψ0⟩ is the state vector in the Heisenberg picture. We can see that the average
position and momentum describe the same trajectory of a corresponding classical
particle. Assuming that p̄(0) = 0, we can further simplify the expressions, obtaining:

x̄(t) = x̄(0)− eEt2

2m
p̄(t) = −eEt ,

(1.8)

(c) Calculate the uncertainties in the position and the momentum of the particle at
time t.

Hint. The calculation should show that (∆x(t))2 contains a term proportional to
the average ⟨ψ0|x̂(0)p̂(0) + p̂(0)x̂(0)|ψ0⟩. This average can be shown to be equal to
zero if it is assumed that the wavefunction at t = 0 is real-valued. Can you show
this?

To determine the uncertainties we can compute

⟨(x(t)− x̄(t))2⟩ = ⟨ψ0|
(
x̂(t)− x̄(0) +

eEt2

2m
1̂− p̄(0)

m
t

)2

|ψ0⟩

= ⟨ψ0|
(
x̂(0)− x̄(0) +

(p̂(0)− p̄(0))t

m

)2

|ψ0⟩

= (∆x(0))2 +
t2

m2
(∆p(0))2

+
t

m
⟨ψ0|(x̂(0)p̂(0) + p̂(0)x̂(0))|ψ0⟩ .

(1.9)

⟨(p(t)− p̄(t))2⟩ = ⟨ψ0| (p̂(0)− p̄(0))2 |ψ0⟩ = (∆p(0))2 . (1.10)

We see that the time-dependence of the uncertainties does not depend on the
external electric field. Thus, the uncertainties evolve in the same way as they
would for a free particle in absence of an external potential. The results show that
the uncertainty in the momentum is constant in time. This is expected because
the electron is subject to a force which is constant, so its momentum is simply
shifted in time by a term −eEt. If we were to know the momentum exactly at
time t = 0, then we would know it exactly also at any later time: simply it would
be the initial momentum −eEt.
The uncertainty in the position has three terms. The first is the initial uncertainty
∆x(0). The second, (∆p(0))2t2/m2 has a simple classical interpretation: the
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uncertainty in the initial velocity leads to an additional error in our prediction of
the position at later times. This error adds (in quadrature) to the error (∆x(0))2.

The last term, proportional to ⟨ψ0|(x̂(0)p̂(0) + p̂(0)x̂(0))|ψ0⟩ can be simplified in
the following way. The Heisenberg-picture state |ψ0⟩ coincides with the Schrödinger
picture state at t = 0, and is assumed to be real-valued.

Then:

⟨ψ0|(x̂(0)p̂(0) + p̂(0)x̂(0))|ψ0⟩ = −iℏ
∫ ∞

−∞
dxψ∗

0(x)

(
x
d

dx
ψ0(x) +

d

dx
(xψ0(x)

)
= −iℏ

∫ ∞

−∞
dx

d

dx

(
xψ2

0

)
= 0

(1.11)

for ψ0(x) real-valued. So we get simply that ∆x2(t) = ∆x2(0) + ∆p2t2/m2.

In general, however, the cross term does not vanish.

2 Diffraction and the uncertainty principle
A beam of electrons, traveling in the +z direction, is sent against a screen with a circular
aperture of radius R. The electrons in the beam have initial momentum p = ℏ(0, 0, k),
k > 0, and the screen with the aperture is located in the plane z = 0. In a plane z = L a
second screen, parallel to the first, is used to detect the intensity of the diffracted beam.

(a) Using the uncertainty principle, estimate the characteristic size of the diffraction
pattern (in other words, the size of the region on the detector screen at which the
intensity is not negligible). Assume that kR ≫ 1.

After the electon has passed through the aperture in the first screen, we acquire
knowledge on its x, y coordinates, which were undetermined initially. The
coordinates of the electrons, in particular, become known with an accuracy of
order ∆x ≃ R, ∆y ≃ R. By the uncertainty principle, this means that the
transverse components of the momenta must become uncertain, with uncertainties
∆px ≥ ℏ/(2∆x) ≃ ℏ/(2R) and ∆py ≥ ℏ/(2∆y) = ℏ/(2R). If kR ≫ 1, these
uncertainties are much smaller than the initial value of the momentum. Thus the
electron move almost in straight motion.

The small angle between the direction of propagation (px, py, pz) and the z axis can
be calculated as:

cos θ =
pz
|p|

. (2.1)

The modulus |p| after the screen is equal to the modulus of the initial momentum
p by energy conservation. This can be seen in two ways. One way is to note that
the problem may be described using a Hamiltonian in which the screen is described
as a potential barrier, stopping the electrons away from the aperture. Since the
Hamiltonian is time-independent, the energy must be conserved.
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A second way, more precise, is to note that the screen has a very large mass compared
to that of the electron. Due to the large differences in the mass Mscreen ≫ me, the
energy absorbed by the screen as it recoils due to the collision with the electron is
completely negligible.
For kR ≫ 1, we can approximate Eq. (2.1) by keeping only the leading term in the
Taylor expansion near θ = 0

1− θ2

2
≃ 1√

πR2

√
1−

p2x + p2y
p2

= 1−
p2x + p2y
2p2

. (2.2)

So we obtain that the variance of the angle is

∆θ2 =
1

p2
(
∆p2x +∆p2y

)
≃ ℏ2

2R2p2
=

1

2k2R2
, (2.3)

and its standard deviation ∆θ ≃ 1/(
√
2kR). The intensity distribution on the

detector screen must, therefore, be a spot of size rL ≃ L∆θ ≃ L/(
√
2kR). (The

factor need not need accurate, but for sure the size of the spot is proportional to
L/(kR).)

(b) Describe qualitatively what happens if, instead, kR ≪ 1.
In the opposite limit kR ≪ 1, the uncertainty in the momentum becomes large and
the electrons do not travel in an almost straight line. Rather, the electrons emerging
after the aperture form approximately a spherical wave.

(c) Quantum mechanically, an approximate solution for the diffracted beam in the
region far from the aperture and for small angles is given by1:

ψ(r) = − 1

2π

∫
x′,y′

ψ(x′, y′)
eik|r−r′|

|r− r′|
. (2.4)

Here x′, y′ run over all points on the plane z = 0 and r′ = (x′, y′, 0). This formula
expresses mathematically the Huygens principle: the wavefunction at all points in
space can be calculated by considering a single wavefront and by considering every
point on the wavefront as a source of spherical waves. In the case of interest here, we
can take ψ(x′, y′) = ψ0 if x′2 + y′2 < R2, ψ(x′, y′) = 0 otherwise with ψ0 a constant.
Using Eq. (2.4) and approximating for L≫ R, show that the intensity distribution
on the screen can be expressed in terms of the Fourier transform∫

x′,y′
ψ(x′, y′)e−iqxx′−iqyy′ = ψ0

∫ 2π

0

dθ′
∫ R

0

r′ dr′e−iqxx′−iqyy′ , (2.5)

where x′ = r′ cos θ′, y′ = t′ sin θ′.
For L≫ R, that is, when the detector screen is located at large distance compared
to the size of the aperture, we can approximate Eq. (2.4) replacing 1/|r−r′| ≃ 1/|r|.
In the exponential factor eik|r−r′|, we can approximate

|r− r′| ≃ |r| − r · r′

|r|
, r = (x, y, z) . (2.6)

1A more accurate solution can be constructed using the Rayleigh-Sommerfeld diffraction theory.
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Since r′ = (x′, y′, 0) has no z component, r ·r′ = xx′+yy′ and defining qx = −kx/|r|,
qy = −ky/|r|, we can rewrite:

ψ(r) = − eik|r|

2π|r|

∫
x′,y′

ψ(x′, y′)e−ik(xx′+yy′)/|r| (2.7)

Introducing qx = kx/|r|, qy = ky/|r| we can write the intensity as

I(r) ∝ |ψ(r)|2 ∝ 1

4π2|r|2

∣∣∣∣∫
x′,y′

ψ(x′, y′)e−i(qxx′+qyy′)

∣∣∣∣2 . (2.8)

We see that there is a relation between the intensity and the Fourier transform of
the wavefunction on the plane z = 0.

(d) To simplify the calculation, approximate the amplitude after the aperture with a
Gaussian wavefunction of spread R:

ψ(x′, y′) =
ψ0√
2
e−(x′2+y′2)/(4R2) . (2.9)

With this simplification and assuming a small scattering angle (so that |r| ≃ L)
calculate analytically the intensity distribution on the screen.

Show that the width of the distribution matches with the one estimated using the
uncertainty principle.

By explicit calculation we find

I(x′, y′) ∝ |ψ0|2

8π2|r|2

∣∣∣∣∫
x′,y′

dx′dy′e−(x′2+y′2)/(4R2)−iqxx′−iqyy′
∣∣∣∣2

=
|ψ0|2

π2|r|2
(4πR2)2e−2(q2x+q2y)R

2

= 16|ψ0|2
R2

|r|2
e−2(q2x+q2y)R

2

.

(2.10)

Recalling that qx = kx/|r|, qy = ky/|r| and considering small scattering angles so
that |r| ≃ L we get

I(x′, y′) ≃ 16|ψ0|2
R2

L2
e−2(x2+y2)k2R2/L2

. (2.11)

The intensity of the screen has a gaussian shape, and has width ∆x = ∆y =
L/(2kR). Up to a factor we recover the result estimated from the uncertainty
principle.

3 Coherent States
In this exercise, we consider further properties and consequences of the harmonic
oscillator, and more importantly we will introduce a class of states that are of great
significance in condensed matter physics and quantum optics, the coherent states.
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(a) For the stationary states of the harmonic oscillator |n⟩, show that:

σx σp =
ℏ
2
(2n+ 1), (3.1)

and thus only the ground state of the harmonic oscillator attains the uncertainty
limit.

The dispersions in position and momentum are given by

σ2
x = ⟨n|x2|n⟩ − ⟨n|x|n⟩2 , σ2

p = ⟨n|p2|n⟩ − ⟨n|p|n⟩2 .

We have shown already that the expectation values of position and momentum
with respect to the harmonic oscillator stationary states are zero, i.e. ⟨n|x|n⟩ =
⟨n|p|n⟩ = 0. The rest of the expectation values we obtain them by using the results
of Exercise 1 of Week 8 (Harmonic Oscillator):

⟨n|x2|n⟩ = ℏ
2mω

(2n+ 1), ⟨n|p2|n⟩ = ℏmω
2

(2n+ 1).

Taking the product of the dispersions, we find

σxσp =
[√ ℏ

2mω

√
2n+ 1

]
·
[√ℏmω

2

√
2n+ 1

]
=

ℏ
2
(2n+ 1).

The ground state n = 0 minimizes the uncertainty product, since σxσp = ℏ
2
.

(b) Certain linear combinations (known as coherent states) also minimize the
uncertainty product. They are in fact eigenstates of the lowering operator:

â |α⟩ = α |α⟩ , (3.2)

where α is complex. Show that indeed these states achieve the uncertainty limit.

We first consider the dispersion in the position with respect to the coherent state:

σ2
x = ⟨α|x2|α⟩ − ⟨α|x|α⟩2 .

Using the expression for the position operator in terms of the ladder operators,
x̂ = x0(â+ â†), x0 =

√
ℏ

2mω
we find:

⟨α|x|α⟩ = x0 ⟨α|(a+ a†)|α⟩ = x0(α + α∗) = 2x0Re{α},

and for the second moment,

⟨α|x2|α⟩ = x20 ⟨α|(a+ a†)2|α⟩
= x20[α

2 + (α∗)2 + 1 + 2α∗α]

= x20[4Re{α}2 + 1].

In the second line, we used aa† = 1+a†a, a consequence of the commutator [a, a†] =
1. Then, using the latter two results, we find:

σ2
x = x20[4Re{α}2 + 1]− 4x20Re{α}2 = x20,
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and thus σx = x0.

In a very similar fashion, we now proceed with the uncertainty in the momentum
operator with respect to the coherent state,

σ2
p = ⟨α|p2|α⟩ − ⟨α|p|α⟩2 .

Using the expression of the momentum operator in terms of the ladder operators,
i.e. p = ip0(a

† − a), p0 =
√

ℏmω
2

, we have:

⟨α|p|α⟩ = ip0 ⟨α|(a† − a)|α⟩ = ip0(α
∗ − α) = p02Im{α}

and for the second moment

⟨α|p2|α⟩ = −p20 ⟨α|(a† − a)2|α⟩

= −p20
[
− 4Im{α}2 − 1

]
= p20

[
4Im{α}2 + 1

]
The uncertainty in the momentum can be calculated:

σ2
p = p20

[
4Im{α}2 + 1

]
− 4p20Im{α}2 = p20,

and thus σp = p0. Then, the uncertainty product becomes :

σxσp = x0p0 =

√
ℏ

2mω

√
ℏmω
2

=
ℏ
2

(3.3)

and thus indeed the coherent state also minimizes the uncertainty product.

(c) Like any other state, a coherent state can be expanded in terms of the energy
eigenstates:

|α⟩ =
∞∑
n=0

cn |n⟩ .. (3.4)

Show that the expansion coefficients are

cn =
αn

√
n!
c0. (3.5)

The expansion coefficients corresponds to overlaps of the energy eigenstates with
the coherent state, i.e. cn = ⟨n|α⟩. The n-th eigenstate is obtained by applying the
raising operator n times (with suitable coefficient), i.e.

|n⟩ = (a†)n√
n!

|0⟩ .

Using this fact, the coefficients are

cn = ⟨n|α⟩ = ⟨0| (a)
n

√
n!

|α⟩ = αn

√
n!

⟨0|α⟩ = αn

√
n!
c0.
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(d) Determine c0 by normalizing |α⟩.

⟨α|α⟩ =
(∑

n

c∗n ⟨n|
)(∑

n

cm |m⟩
)
=

=
∑
n,m

c∗ncm ⟨n|m⟩ =

=
∑
n,m

c∗ncmδn,m =

=
∑
n

|cn|2

Then, using the result of the previous question, we write:

⟨α|α⟩ =
∑
n

|cn|2 =

=
∑
n

(|α|2)n

n!
|c0|2 =

= e|α|
2 |c0|2.

Since we require normalization of the coherent state, i.e. ⟨α|α⟩ = 1, we find:

c0 = e−|α|2/2.

The coefficients take the following form

cn =
αn

√
n!
e−|α|2/2,

and the resulting distribution is

P (n;µ = |α|2) = |cn|2 = e−|α|2 (|α|2)n

n!
.

The distribution formed by |cn|2 with respect to n is a Poisson distribution form,
where |α|2 correspond to the mean of the distribution.

(e) Show that a coherent state can be expressed as

|α⟩ = D(α) |0⟩ , where D̂(α) = eαâ
†−α∗â, (3.6)

where D(α) is called the ‘displacement’ operator, for reasons that will be obvious
later on, and it is a unitary operator.

Hint: The Baker–Campbell–Hausdorff formula will be useful

eXeY = eX+Y+ 1
2
[X,Y ],
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where the two operators X, Y have the following commutation relations: [X, Y ] = c
and [X, [X, Y ]] = [Y, [Y,X]] = 0.

We have shown that

|α⟩ =
∞∑
n=0

αn

√
n!
c0 |n⟩

which can be expressed in terms of the ground state |0⟩ using |n⟩ = (a†)n/
√
n! |0⟩,

|α⟩ = c0

∞∑
n=0

αn

√
n!

(a†)n√
n!

|0⟩ = c0

∞∑
n=0

(αa†)n

n!
|0⟩ .

We use the expression for c0 = exp{−|α|2/2} from the previous question to write

|α⟩ = e−|α|2/2
∞∑
n=0

(αa†)n

n!
|0⟩ .

From the Taylor expansion of the exponential, we find:

|α⟩ = e−|α|2/2eαa
† |0⟩ .

To proceed, we consider the Baker–Campbell–Hausdorff formula for X̂ = αâ† and
Ŷ = −α∗â.

eXeY = eX+Y+ 1
2
[X,Y ],

where the "higher-order" commutators are zero. The commutator evaluates to |α|2
and thus:

eαâ
†
e−α∗âe−|α|2/2 = eαâ

†−α∗â. (3.7)

At a first glance, this result does not seem to be useful in our expression, but a
closer look does the trick. Consider the action of the LHS on |0⟩,

eαâ
†
e−α∗âe−|α|2/2 |0⟩ = e−|α|2/2

∑
n,m

αn(α∗)m

n!m!
(â†)nâm |0⟩ .

The action of the lowering operator on the ground state gives zero, thus the only
terms remaining are the ones for m = 0, which corresponds to the following results

eαâ
†
e−α∗âe−|α|2/2 |0⟩ = e−|α|2/2eαâ

† |0⟩ .

The latter is equal to |α⟩. At the same time, using the result of Eq. (3.7), we find:

|α⟩ = eαâ
†−α∗â |0⟩ . (3.8)

We thus identify
D̂(α) = eαâ

†−α∗â (3.9)

as the displacement operator, and it’s indeed a unitary operator.
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(f) To gain some insights on our earliest result, first find an expression for the real
and imaginary parts of α in terms of the expectation values of the position and
momentum operators (in the coherent state). Hint: Consider the expectation values
first.

First, the position operator written in terms of the ladder operators,

x̂ =
ℓ0√
2

(
â+ â†

)
, ℓ0 =

√
ℏ
mω

.

The expectation value is taken with respect to the coherent state as follows:

⟨α|x̂|α⟩ = ℓ0√
2
⟨α|

(
â+ â†

)
|α⟩ = ℓ0√

2

(
α + α∗) = ℓ0

√
2Re{α},

Thus, the real part of α is connected to the expectation value of the position operator

Re{α} =
⟨x̂⟩√
2 ℓ0

.

Now, for the momentum operator

p̂ =
iℏ√
2ℓ0

(â† − â),

the expectation value in the coherent state is:

⟨α|p̂|α⟩ = i ℏ√
2 ℓ0

⟨α|
(
â† − â

)
|α⟩

= − i ℏ√
2 ℓ0

(α− α∗)

= − i ℏ√
2 ℓ0

(2 i Im(α))

=
ℏ
√
2

ℓ0
Im(α),

and thus:
Im{α} =

ℓ0 ⟨p̂⟩
ℏ
√
2
.

(g) Use your result from the previous question and show that:

|α⟩ = exp
(
− i p̂ ⟨x⟩

ℏ
+

i ⟨p⟩ x̂
ℏ

)
|0⟩. (3.10)

We have found that the complex α can be expressed in terms of the expectation
values of position and momentum operators, i.e.

α =
⟨x⟩
ℓ0
√
2
+ i

ℓ0 ⟨p⟩
ℏ
√
2
.
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Also, the ladder operators can be expressed in terms of the position and momentum
operators as follows:

â† =
1√
2

[ x̂
ℓ0

+
ℓ0p̂

iℏ

]
, â =

1√
2

[ x̂
ℓ0

− ℓ0p̂

iℏ

]
.

Using the above results, we can show by simple algebraic manipulation that

αâ† − α∗â =
i p̂ ⟨x⟩
ℏ

+
i ⟨p⟩ x̂
ℏ

and thus we obtain the desired result.

(h) Considering the harmonic oscillator, evolve the coherent state in time, and show
that |α(t)⟩ remains an eigenstate of â, and the eigenvalue evolves in time:

α(t) = e− i ω t α.

Hence a coherent state stays coherent, and continues to minimize the uncertainty
product.
We apply the time-evolution operator on the coherent state

|α(t)⟩ = U(t) |α⟩ = e−iHt/ℏ

where H = ℏω(N + 1
2
) is the Hamiltonian of the harmonic oscillator. We use the

expansion of the coherent state in terms of the energy eigenstates to find the action
of the time-evolution operator on the coherent state:

|α(t)⟩ = e−iωt/2e−iN̂ωt

∞∑
n=0

cn |n⟩

= e−iωt/2

∞∑
n=0

e−inωtcn |n⟩ .

To show that this state remains an eigenstate of â,

â |α(t)⟩ = e−iωt/2

∞∑
n=0

e−inωtcna |n⟩

= e−iωt/2

∞∑
n=1

e−inωtcn
√
n |n− 1⟩ ,

and we have used a |n⟩ =
√
n |n− 1⟩. Notice that the sum now runs from n = 1

instead of n = 0, since the action of the lowering operator to |0⟩ gives zero. We now
use the explicit form of the coefficients cn and proceed as follows:

â |α(t)⟩ = e−iωt/2

∞∑
n=1

e−inωt α
n

√
n!

√
n |n− 1⟩

= e−iωt/2αe−iωt

∞∑
n=1

e−i(n−1)ωt α(n−1)√
(n− 1)!

|n− 1⟩

= αe−iωte−iωt/2

∞∑
m=0

e−imωt α
m

√
m!

|m⟩

= αe−iωt |α(t)⟩ ,
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thus showing that indeed the time-evolved coherent state remains an eigenstate of
the lowering operator.

(i) Is the ground state of the harmonic oscillator a coherent state? If so, what is the
eigenvalue?

The ground state is a coherent state, an eigenstate of the lowering operator with
α = 0

a |0⟩ = 0 |0⟩ .

Remark: On physical grounds, coherent states are indeed special quantum states arising
from the harmonic oscillator and they are the "most classical" quantum states, due to
having many classical-like properties. They are found for example in quantum optics
(where they can be used to describe laser light) and condensed matter, where they are
often used to describe collective behavior such as in Bose-Einstein condensation,
superconductivity and superfluidity.

4 The Propagator in Quantum Mechanics
In quantum mechanics, the propagator is a fundamental object that describes how a
particle’s quantum state evolves from one point in space and time to another. It gives
the amplitude for a particle to travel from position x′ at time t0 to position x at time t,
and essentially encodes the full dynamics of the system. It is defined as:

K(x, x′; t− t0) ≡ ⟨x|e−
i
ℏ (t−t0) Ĥ |x′⟩. (4.1)

In any given system, the propagator depends only on the potential and its independent
of the initial state. As we will show in this exercise, the propagator can be constructed
once the energy eigenfunctions and their eigenvalues are given.

The propagator is central to both the path integral formulation and the Schrödinger
picture, linking initial and final states via an integral kernel that “propagates” the
wavefunction forward in time.

(a) Show that, when the system (i.e. the Hamiltonian) is invariant under space
translations x → x + α (as for instance in the free-particle case), the propagator
has the property

K(x, x′; t− t0) = K(x− x′; t− t0).

Space translations are expressed through the action of an operator as follows:

⟨x|e
i
ℏ α·p̂ = ⟨x+ α|.

Space-translation invariance holds if

[p̂, Ĥ] = 0 =⇒ e
i
ℏ α·p̂ Ĥ e−

i
ℏ α·p̂ = Ĥ,
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which also implies that

e
i
ℏ α·p̂ e−

i
ℏ (t−t0) Ĥ e−

i
ℏ α·p̂ = e−

i
ℏ (t−t0) Ĥ .

Thus we have

K(x, x′; t− t0) = ⟨x+ α | e−
i
ℏ (t−t0) Ĥ | x′ + α⟩ = K

(
x+ α, x′ + α; t− t0

)
.

which clearly implies that the propagator can only be a function of the difference
x− x′.

(b) Show that the propagator can be expressed in terms of the eigenstates ψE(x) of the
Hamiltonian:

K(x, x′; t− t0) =
∑
E

e−i(t−t0)E/ℏψE(x)ψ
∗
E(x

′).

We consider the definiton of the propagator as given in the beginning of this exercise.
Using the completeness relation for the eigenstates of the Hamiltonian

1 =
∑
E

|E⟩ ⟨E|

we have:
K(x, x′; t− t0) =

∑
E

⟨x|e−
i
ℏ (t−t0) Ĥ |E⟩ ⟨E|x′⟩ .

We use the notation ψE(x) = ⟨E|x⟩ for the wavefunctions. We also use the fact that
the time evolution operator acting on one of the eigenstates of the system provides
the usual phase factor, and thus:

K(x, x′; t− t0) =
∑
E

e−
i
ℏ (t−t0)EψE(x)ψ

∗
E(x

′).

(c) Show that when the energy eigenfunctions are real, i.e. ψE(x) = ψ∗
E(x) (as in the

harmonic oscillator), the propagator has the property

K(x, x′; t− t0) = K(x′, x; t− t0).

Consider the propagator as obtained from the previous question. With real
eigenstates, we obtain

K(x, x′; t− t0) =
∑
E

e−
i
ℏ (t−t0)EψE(x)ψE(x

′).

It is evident that the order of x, x′ does not matter, and thus

K(x, x′; t− t0) = K(x′, x; t− t0).
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(d) Show that when the energy eigenfunctions are also parity eigenfunctions (i.e. even
or odd functions), the propagator has the property

K(x, x′; t− t0) = K
(
−x, −x′; t− t0

)
. (4.2)

This can be shown by using the result of Question (b),

K(−x, −x′; t− t0) =
∑
E

ψE(−x) e−
i
ℏ (t−t0)E ψ∗

E(−x′)

=
∑
E

(±)2 ψE(x) e
− i

ℏ (t−t0)E ψ∗
E(x

′)

= K(x, x′; t− t0).

We have used the fact that the energy eigenstates ψE(x) have either odd ψE(−x) =
−ψE(x) or even parity ψE(−x) = +ψE(x).

(e) Show that we always have the property

K(x, x′; t− t0) = K∗(x′, x; − t+ t0
)
.

Again, this can be shown by using the result of Question (b),

K(x, x′; t− t0) =
∑
E

ψE(x) e
− i

ℏ (t−t0)E ψ∗
E(x

′)

=
[∑

E

ψ∗
E(x) e

− i
ℏ (t0−t)E ψE(x

′)
]∗

= K∗(x′, x; t0 − t
)
.

(f) Show that the final state can be obtained by using the propagator

ψ(x, t) =

∫
dx′ K(x, x′; t− t0)ψ(x

′, t0). (4.3)

The final state can be given by considering the time evolution of the initial state
through the time-evolution operator,

|ψ(t)⟩ = e−iĤ(t−t0)/ℏ |ψ(t0)⟩ .

By taking the bra ⟨x| on both sides and using the completeness relation for the
position representation in the RHS, we have

⟨x|ψ(t)⟩ =
∫
dx′ ⟨x| e−iĤ(t−t0)/ℏ |x′⟩ ⟨x′|ψ(t0)⟩

We identify ⟨x| e−iĤ(t−t0)/ℏ |x′⟩ as the propagator K(x, x′; t− t0) and ⟨x|ψ(t)⟩ as the
spatial wavefunction, thus:

ψ(x, t) =

∫
dx′ K(x, x′; t− t0)ψ(x

′, t0).
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(g) Calculate the propagator of a free particle that moves in one dimension. Show that
it is proportional to the exponential of the classical action

S ≡
∫
dt L,

defined as the integral of the Lagrangian for a free classical particle starting from
the point x at time t0 and ending at the point x′ at time t. For a free particle the
Lagrangian coincides with the kinetic energy. Verify also that in the limit t → t0
we have

K0(x− x′; 0) = δ(x− x′). (4.4)

Hint: Consider
K(x, x′; t− t0) ≡ ⟨x|e−

i
ℏ (t−t0) Ĥ |x′⟩, (4.5)

and use the resolution of identity of the momentum representation.

The propagator is

K0(x, x
′; t− t0) =

∫
dp ⟨x|e−

i
ℏ (t−t0) Ĥ |p⟩ ⟨p|x′⟩.

Since the Hamiltonian of the free particle is simply H = p2/2m, thus the time-
evolution operator acting on a momentum eigenket will give the usual phase,

K0(x, x
′; t− t0) =

∫
dp e−i (t−t0)

p2

2mℏ ⟨x|p⟩ ⟨p|x′⟩.

Now recall the eigenstates of the momentum operator in the position representation
take the form of a plane wave, i.e.

⟨x|p⟩ = eipx/ℏ√
2πℏ

,

and thus the propagator becomes:

K0(x, x
′; t− t0) =

1

2πℏ

∫
dp e−i (t−t0)

p2

2mℏ eipx/ℏe−ipx′/ℏ

=
1

2πℏ

∫
dp exp

{
+
i

ℏ
(x− x′)p− i

2mℏ
(t− t0)p

2
}
.

We now use the hint provided∫ +∞

−∞
exp

[
−
(
a x2 + b x+ c

)]
dx =

√
π

a
exp

( b2
4 a

− c
)
.

where a = i(t − t0)/(2mℏ), b = −i(x − x′)/ℏ and c = 0. Thus, the propagator
becomes:

K0(x, x
′; t− t0) =

[
m

2πℏi(t− t0)

]1/2

exp

{
i
m(x− x′)2

2ℏ(t− t0)

}
.
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The exponent can be written as iS/ℏ where S is the classical action. A simple
calculation indeed confirms that this corresponds to the classical action, since:

S =

∫ t

t0

dt
mv2

2
= (t− t0)

m

2

(
x− x′

t− t0

)2

=
m (x− x′)2

2 (t− t0)
.

In order to consider the limit t → t0, it is helpful to insert a small imaginary part
into the time variable, according to

t → t − i ϵ.

Then, we can safely take t = t0 and consider ϵ→ 0. We get

K0(x− x′; 0) = lim
ϵ→0

{[ m

2πℏε

]1/2

exp

{
− m(x− x′)2

2ℏε

}
} = δ

(
x− x′

)
.

For the last step we used the well-known Gaussian representation of the delta
function,

δ(x) = lim
ϵ→0

(
ϵ π

)−1
2 exp

[
−x2/ ϵ

]
.

(h) Consider the case of a free particle initially in the plane-wave state

ψ(x, t0) =
1√
2π

exp
(
ikx− i

ℏ k2

2m
t0

)
(4.6)

and, using the expression for the free propagator, find the time-evolved state ψ(x, t).

The time-evolved state is obtained by

ψ(x, t) =

∫
dx′ K(x, x′; t− t0)ψ(x

′, t0),

where the propagator corresponds to that of a free particle, derived in the previous
question. Using the initial state given, we have:

ψ(x, t) =
1√
2π

∫
dx′A(t)eiB(t)(x−x′)2eikx

′
e−iC(t0),

where we have defined (short-hand notation):

A(t) =

[
m

2πℏi(t− t0)

]1/2

, B(t) =
m

2ℏ(t− t0)
, C(t0) =

ℏ k2

2m
t0.

Re-arranging the above equation, we have:

ψ(x, t) =
A(t)√
2π
e−iC(t0)

∫
dx′ eiB(t)(x−x′)2eikx

′
,
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and changing variables x− x′ = z, we find:

ψ(x, t) =
A(t)√
2π
e−iC(t0)eikx

∫
dz eiB(t)z2−ikz.

We are left with a Gaussian integral, which is of the following form∫ +∞

−∞
exp

[
−
(
a x2 + b x+ c

)]
dx =

√
π

a
exp

( b2
4 a

− c
)
.

where a = B(t)/i, b = ik and c = 0. Thus, using this identity, we find the time-
evolved state

ψ(x, t) =
A(t)√
2π
e−iC(t0)eikx

√
iπ

B(t)
e−

ik2

4B(t) ,

which further simplifies to:

ψ(x, t) =
1√
2π
eikx−i ℏ

2k2

2m
t/ℏ. (4.7)
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